

Introduction

- SDG aims for generalization to new domains
- One source domain is available
- Domain shifts can be broadly defined via text prompts
- Vision-Language models like CLIP [1] can be helpful

Text Prompts are used to estimate target domain features

Contribution

- Leveraging vision text aligned embeddings
- Use textual domain prompts to generate semantic augmentations
- Train-time only augmentation

CLIP the Gap: A Single Domain Generalization Approach for Object Detection Vidit, Martin Engilberge, Mathieu Salzmann CVLab, EPFL

Method

Training Step

Original image features

Adverse Weather Dataset [2] Source Domain: Day

			mAP				mAP		
Method	Day	Night Clear	Dusk Rainy	Night Rainy	Day Foggy	Method	Comic	Watercolor	
	Clear					CLIP-init	26.2	41.9	
S-DGOD [2]	56.1	36.6	28.2	16.6	33.5	Ours w/o seg-aug	32.8	42.7	
Ours	51.3	36.9	32.3	18.7	38.5	Ours	33.5	43.4	

Model Component			mAP						mAP					
			Source	ource Target			A	Day	Night	Dusk	Night	Day		
CLIP init	\mathcal{L}_{clip-t}	Attn. Pool	Sem. Aug	Day Clear	Night Clear	Dusk Rainy	Night Rainy	Day Foggy	Aug. Type	Clear	Clear	Rainy	Rainy	Foggy
				48.1	34.4	26.0	12.4	32.0	no-aug.	51.0	35.9	31.3	16.7	37.7
\checkmark				51.2	37.0	31.0	15.7	37.5	random	51.2	36.0	30.4	15.3	37.3
\checkmark	\checkmark			50.7	36.0	31.3	16.3	36.9	clip-random	51.5	36.4	30.2	15.9	37.9
\checkmark	\checkmark	\checkmark		51.0	35.9	31.3	16.7	37.7						
\checkmark	\checkmark	\checkmark	\checkmark	51.3	36.9	32.3	18.7	38.5	Ours w/ seg.aug	51.3	36.9	32.3	18.7	38.5

Conclusion

- Textual description of underlying domain shift can be helpful
- Vision-Text embeddings helps in augmenting missing target image features

Results

Features obtained by optimization

Cross domain dataset [3] Source Domain: Pascal VOC[4]

Ablations

References

Alec Radford et al. Learning transferable visual models from natural language supervision, ICML'21 2] Aming Wu and Cheng Deng. Single-domain generalized object detection in urban scene via cyclic disentangled self distillation. CVPR'22 [3] Naoto Inoue, et al. Cross-domain weakly-supervised object detection through progressive domain adaptation, CVPR'22 [4] M. Everingham, et al. The PASCAL Visual Object Classes Challenge 2012 (VOC2012), ECCV'12