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Introduction

v SDG aims for generalization to new domains
v One source domain is available
v Domain shifts can be broadly defined via text prompts
v Vision-Language models like CLIP [1] can be helpful
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Transformations Aggregate regions

• It is hard to know exact homographies and regions to aggregate for all shifts
• Our proposed method learns both of these components with MeanTeacher training.

Our arhitecture

Method

v We curate a set of textual prompts       which can represent new domains

v For weather dataset, we can create prompts       as

v Source domain prompt       for the same is 

Contribution

v Leveraging vision - text aligned embeddings 
v Use textual domain prompts to generate semantic 

augmentations
v Train-time only augmentation

Conclusion
v Textual description of underlying domain 

shift can be helpful 
v Vision-Text embeddings helps in 

augmenting missing target image features
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Text Prompts are used to estimate target domain features 
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Step 1.

an image taken during the day.
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Step 2.

v Train by sampling augmentations
v Inference without augmentation

Original image features Features obtained by optimization

Adverse Weather Dataset [2]
Source Domain: Day 

Cross domain dataset [3]
Source Domain: Pascal VOC[4] 
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